
CORRIGE LES ANGLES GEOMETRIQUES

Me prévenir de toute erreur éventuelle.

« Les Mathématiques représentent essentiellement le langage théorique universel. C'est-à-dire qu'à mon avis, les seules possibilités rigoureuses d'accéder à une pensée ayant validité universelle se font par les Mathématiques ou par des lois mathématiques. » Einstein¹.

I.	Introduction.			2
II.	Définition d'un angle géométrique.			2
III.	Mesure d'un angle.			3
IV.	Constructions d'angles.			6
V.	Cinq Angles particuliers; classification.			7
VI.	Angles et triangles : Constructions.			8
VII.	Révisions sur tout Le contrat 5 (2 livrets).			9
A	<u>Matériel</u> : Pour ce cours, vous aurez besoin de votre matériel de géométrie et en <u>Pré requis pour prendre un bon départ :</u>	particulier du	rapporteur!	
		A refaire	A revoir	Maîtrisé
Con	struire, reproduire un triangle ou une figure à l'aide d'un compas.			

NOM et Prénom :	ۏme
NOM et Frenom	0

¹ **Albert Einstein** (14 mars 1879 à Ulm, Allemagne - 18 avril 1955 à Princeton, New Jersey, États-Unis) physicien allemand, puis apatride (1896), suisse (1899), et enfin suisse-américain (1940).

Il a publié la théorie de la relativité restreinte en 1905 et celle de la relativité générale en 1915. Il a largement contribué au développement de la mécanique quantique et de la cosmologie. Il a reçu le prix Nobel de physique en 1921 pour son explication de l'effet photoélectrique. Son travail est notamment connu pour l'équation E=mc² qui explique la puissance de l'énergie nucléaire.

I. INTRODUCTION.

Ci-dessous une figure que tous les enfants du monde connaissent ! Dessiner à main levée une figure semblable, en plus petit ou en plus grand (à peu prés et rapidement !).

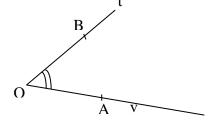
Les longueurs ont-elles changé ? Oui. Les « inclinaisons » entre les côtés ont-ils changé ? Non!

Lorsqu'on veut reproduire des figures de manière « semblable » (agrandissement ou réduction de la figure originale), on ressent tout de suite le besoin de savoir mesurer une « inclinaison » entre deux demidroites.

Ainsi apparaît les notions d'angle géométrique et de mesure d'angle (« l'inclinaison »).

Figure: Voici dessiné un angle ySx. Sommet de l'angle Codage Codage Codage

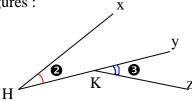
Cet angle a d'autres noms : \widehat{ASB} ou \widehat{BSA} ou \widehat{BSy} ou \widehat{ySB} ou \widehat{ASx} ou \widehat{xSA} .

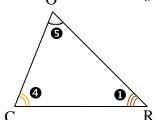

de l'angle

- Trois définitions :
- Un angle est un objet géométrique formé par 2 demi-droites ayant le même point « origine ».
- **2** Ce point commun « origine » s'appelle le **sommet** de l'angle.
- **3** Les 2 demi-droites s'appellent les *côtés* de l'angle.
- <u>Notation</u>: Un angle de sommet U formé par ses deux côtés [UF) et [UN) se note tout simplement en 3 lettres sous un chapeau : \widehat{FUN} , le sommet U de l'angle correspondant à la pointe du chapeau².
- Codage: On code l'angle avec un arc de cercle. Repasser en rouge le codage sur la figure plus haut.
- Application : Voici dessiné un angle. Repasser en rouge son codage.

Le point O est son *sommet*.

Les 2 demi-droites [Ot) et [OA) sont ses deux côtés.


Son nom est BOA ou AOB ou vOB ou tOV.



Χ

² Parfois, on le note U avec un seul point. **Attention,** cette notation est **source de nombreuses erreurs** de la part des élèves quand il y a plusieurs angles ayant le même sommet !

Exercice : Voici plusieurs figures :

Compléter le tableau suivant ligne après ligne :

Angle	Sommet	Côtés (Attention aux notations)	Nom
4	C	[CO) et [CR)	<i>ÔCR</i>
2	Н	[Hx) et [Hy)	KHx
3	K	(zK] et (yK]	\widehat{zKy}
2	Н	[Hy) et [Hx)	<i>ŷHx</i>
0	R	[RC) et [RO)	ĈRO

III. MESURE D'UN ANGLE.

Pour connaître « l'inclinaison » entre 2 demi-droites de même origine, il faut savoir mesurer un angle.


A. <u>Unité de mesure d'angle :</u>

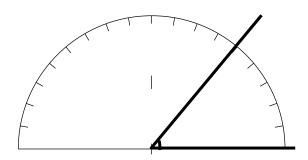
Il existe 3 unités pour mesurer les angles. Au collège, on utilisera uniquement le **degré** (noté « ° »).³

<u>Remarque</u>: Le degré n'est pas l'unité du Système International pour les angles. C'est le radian, qui sera vu en Seconde.

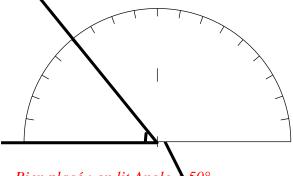
B. Le rapporteur :

Pour mesurer des angles, nous utiliserons un instrument en forme de demi-disque : le *Rapporteur*.

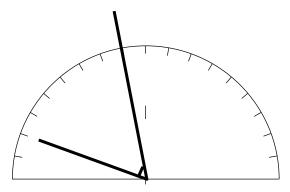
Un rapporteur est en général gradué de 0° à 180°, dans les deux sens pour qu'il soit plus pratique à utiliser (comme celui qui est dessiné). Il doit être en plastique souple et tenir dans la trousse.

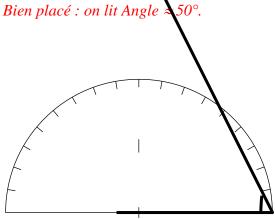

En est-il de même pour ton rapporteur ? Si non, vas vite en acheter un, gradué dans les 2 sens !

³ 1 degré est la mesure de l'angle au centre d'un disque qu'on aurait partagé en 360 angles de même mesure.

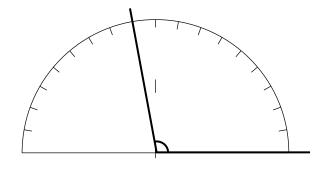

C. Mesurer un angle avec le rapporteur : 3 conditions nécessaires !

- Le centre du rapporteur doit être sur le sommet de l'angle.
- 2 Le diamètre du rapporteur doit être sur l'un des côtés de l'angle déjà dessiné.
- 3 On doit compter la mesure « à l'intérieur » de l'angle et non à l'extérieur.


Exercice ①: Les rapporteurs suivants sont-ils bien placés ? Si non, expliquer pourquoi, puis donner la mesure de chaque angle (les graduations sont de 10° en 10° sur les rapporteurs dessinés).


Bien placé. On lit (graduations de 10 en 10°) $\approx 50^{\circ}$.

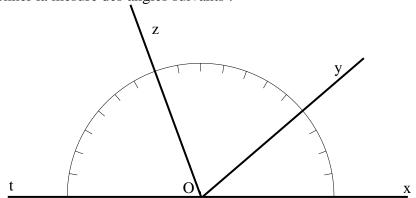
Bien placé : on lit Angle


Mal placé : Le diamètre du rapporteur ne coïncide° avec aucun côté de l'angle. Angle $\approx 60^{\circ}$.

Mal placé : le centre du rapporteur ne coïncide pas avec le sommet de l'angle.

On lit Angle ≈ 64°

Exercice 2 : Sans réfléchir, je lis 80° pour la mesure de l'angle ci-dessous. Pourquoi ai-je faux !



Au lieu de lire l'angle de droite à gauche, j'ai lu l'angle supplémentaire de gauche à droite qui fait effectivement 80°.

Lire la bonne mesure de l'angle: en comptant les graduations, on trouve 100°.

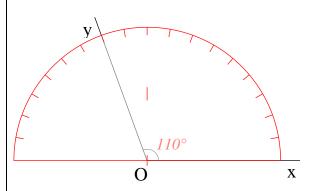
\triangleright Exercice 3:

Donner la mesure des angles suivants :

$$\widehat{\text{tOy}} = 40^{\circ}$$

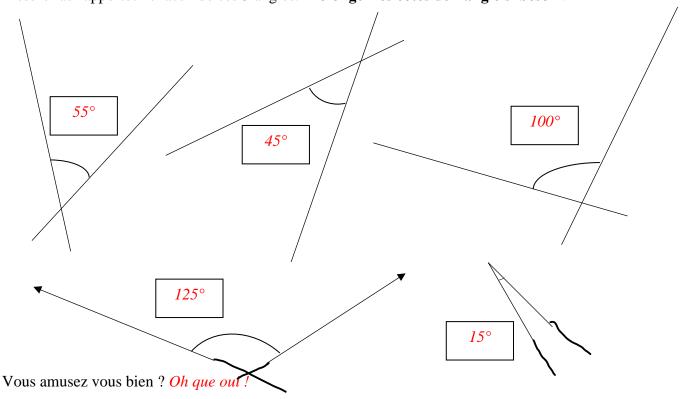
$$\widehat{\text{tOy}} = 140^{\circ}$$

$$\widehat{\text{zOx}} = 110^{\circ}$$


$$\widehat{\text{tOz}} = 70^{\circ}$$

Mesurer un angle avec son rapporteur : Méthode en 4 étapes.

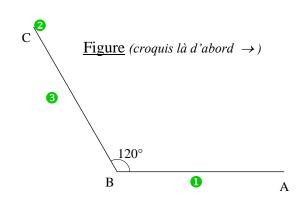
- 1 Placer le centre du rapporteur sur *le sommet* O de l'angle.
- 2 En tournant le rapporteur, bien faire coïncider le diamètre du rapporteur avec l'un des 2 *côtés* de l'angle.


L'angle doit être « dans » le rapporteur.

- **3** A partir de ce premier côté coïncidant avec le diamètre du rapporteur, compter de 0° jusqu'à l'endroit où le 2ème côté de l'angle « coupe » le rapporteur (allonger les côtés si besoin).
- **①** $\widehat{\text{xOy}}$ ≈ 110° Reporter cette mesure sur la figure.

Exercice ①:

Mesurer au rapporteur chacun de ces 5 angles. Prolonger les côtés de l'angle si besoin.


IV. CONSTRUCTIONS D'ANGLES.

A. Construction au rapporteur :

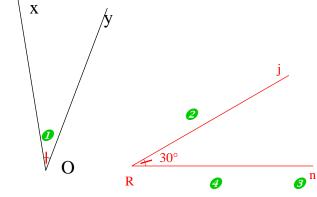
On veut construire un angle \widehat{ABC} de mesure 120°:

Plan de construction en 3 étapes

- Placer le sommet *B* puis tracer le côté [*BA*).
- 2 A partir de ce côté [BA], mesurer 120° avec le rapporteur (attention au sens !) puis placer le 3ème point *C*.
- 3 Tracer l'autre côté [BC). Puis coder l'angle.

Maintenant qu'on sait mesurer et construire un angle, on va pouvoir reproduire un angle de même mesure qu'un angle déjà dessiné. Il y a 2 méthodes :

B. Reproduction à l'identique d'un angle en utilisant le rapporteur :


Il s'agit de construire un angle \widehat{nRj} de même mesure que \widehat{yOx} ci contre :

Plan de construction en 4 étapes.

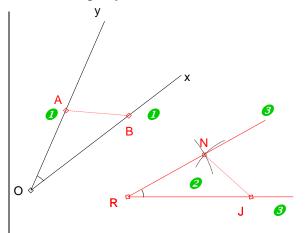
- **1** Mesurer l'angle déjà dessiné : $\widehat{yOx} = 30^{\circ}$.
- 2 Tracer une demi-droite [Rj) quelconque.
- 3 A l'aide du rapporteur, placer un point n tel que :

$$\widehat{nRj} = \widehat{yOx} = 30^{\circ}$$

4 Tracer l'autre côté [Rn).

Coder ces 2 angles de même mesure.

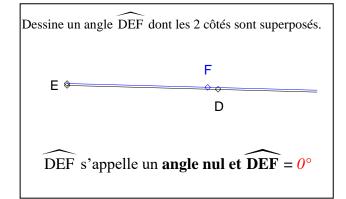
C. Reproduction à l'identique d'un angle en utilisant le compas :

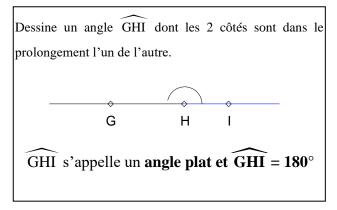

Il s'agit de construire au compas un angle \widehat{NRJ} de même mesure que \widehat{yOx} ci contre :

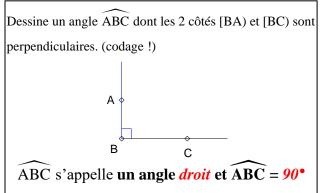
Plan de construction en 3 étapes.

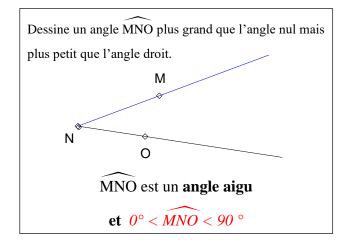
En fait, un angle déjà tracé peut être vu comme les 2 côtés d'un triangle!

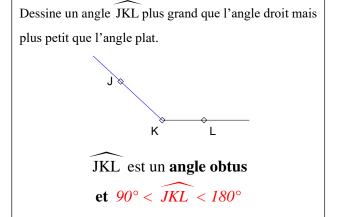
L'idée est donc de reproduire ce triangle au compas.


- 1 Compléter le triangle yOx en pointillés.
- ② Construire à la règle et au compas un triangle NRJ identique au triangle yOx, (attention à l'ordre des points N, R et J; [NJ] en pointillés).
- 3 Prolonger les côtés [RN) et [RJ) puis placer le codage pour l'angle \widehat{NRJ} .




V. <u>CINQ ANGLES PARTICULIERS</u>; <u>CLASSIFICATION</u>.


Pour les 5 figures suivantes, le sommet est déjà placé, le 1er côté de l'angle sera horizontal en bleu, le 2ème côté sera en rouge.


Classe de Sixième

A. Classification des angles selon leur mesure croissante :

On peut classer les angles suivant l'ordre croissant de leur mesure (tel un compas qui s'ouvre).

Nom de l'angle	Angle nul	Angle aigu	Angle droit	Angle obtus	Angle plat
Figure	O x	O x	y O x	y O x	y O x
Mesure	$\widehat{xOy} = 0^{\circ}$	$0^{\circ} < \widehat{xOy} < 90^{\circ}$	$\widehat{xOy} = 90^{\circ}$	$90^{\circ} < \widehat{xOy} < 180^{\circ}$	$\widehat{xOy} = 180^{\circ}$

VI. ANGLES ET TRIANGLES : CONSTRUCTIONS.

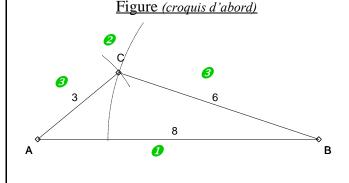
Méthode générale pour tracer une figure à partir d'un énoncé

- ① Sans suivre le plan de construction, faire d'abord un **petit croquis à main levée de la <u>figure finale</u>** pour avoir une idée de sa forme. Ce croquis doit être :
 - <u>lisible</u>: pas trop petit, avec de la couleur pour le codage et les longueurs.
- <u>complet</u>: informations données par l'énoncé reportées sur ce croquis (noms des points, longueurs, mesures des angles, codages etc.).
- ② Puis, suivre le plan de construction, étape par étape, à la règle et au compas, pour construire proprement la figure.

Attention aux notations : côtés (entre []), droites (entre ()), et longueurs (sans rien)!

A. A partir des longueurs des 3 côtés (rappel contrat 4) :

Pour tracer un triangle quelconque au compas et à la règle graduée, il suffit de connaître ses 3 longueurs (2 voire 1 longueurs seulement quand le triangle est spécial).


 \triangleright Tracer le triangle ABC sachant que AB = 8 cm, AC = 3 cm, BC = 6 cm.

Plan de construction en 3 étapes

- Tracer le côté (le plus grand en général) [AB] de longueur 8 cm.
- 2 Construire au compas le point *C* tel que :

$$AC = 3 cm et BC = 6 cm$$
.

3 Tracer les côtés [AC] et [BC].

B. A partir d'1 angle et des 2 longueurs adjacentes à cet angle :

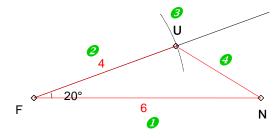
On utilise en plus de la règle graduée et du compas, *le rapporteur*.

Et on fait d'abord un petit croquis complet avec les mesures pour se faire une idée.

Tracer le triangle UFN sachant que $\widehat{F} = 20^{\circ}$, UF = 4 cm et FN = 6 cm.

Plan de construction en *3* étapes.

- 1 Tracer le segment (le plus grand en général)
 [FN] de longueur 6 cm.
- 2 Construire au rapporteur l'angle NFU tel que :


$$\widehat{NFU} = 20^{\circ}$$

3 Placer le 3ème point U tel que :

$$UF = 4 cm$$

4 Puis tracer le côté [UN].

Figure (croquis d'abord)

C. A partir de la longueur d'1 côté et des 2 angles adjacents à ce côté :

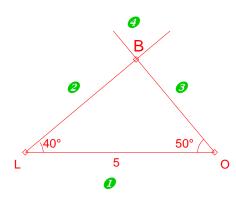
On utilise en plus de la règle graduée et du compas, *le rapporteur*.

Et on fait un petit croquis avec les mesures pour se faire une idée.

 \triangleright Tracer le triangle BOL sachant que LO = 5 cm, BLO = 40° et BOL = 50° .

Plan de construction en 4 étapes

- 1 Tracer le segment [LO] de longueur 5 cm.
- 2 Construire au rapporteur l'angle *LBO* tel que :


$$\widehat{BLO} = 40^{\circ}$$

3 Construire au rapporteur l'angle **BOL** tel que :

$$\widehat{BOL} = 50^{\circ}$$

 \bigcirc A l'intersection, placer le \bigcirc point **B**.

Figure (croquis d'abord)

D. Remarques sur les constructions de triangle :

Pour pouvoir construire un triangle de façon (presque) unique, combien faut-il toujours au minimum d'informations distinctes ? 3!

Exemples: triangle dont on connaît 2 angles et 1 longueur — **3** informations distinctes.

triangle rectangle isocèle et 1 longueur —

 \longrightarrow 3 informations.

REVISIONS SUR TOUT LE CONTRAT 5 (2 LIVRETS). VII.

• Test 2010 : Construire les figures suivantes. Réflexe : Faire d'abord un croquis de la figure finale !

Voir Corrigé Test 2010!

Le quadrilatère ABCD tel que : AB = 5 cm BC = 3 cm Le triangle TIC isocèle en I tel que :

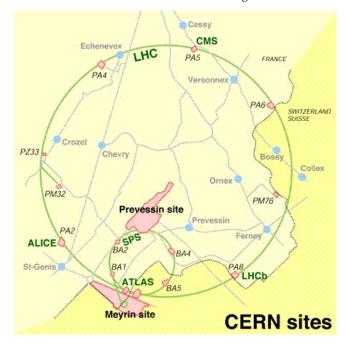
$$\widehat{ABC} = 90^{\circ}$$
 $\widehat{BCD} = 120^{\circ}$ $\widehat{BAD} = 70^{\circ}$

$$TI = 5$$
 cm et $\widehat{TCI} = 70^{\circ}$.

- 2 Contrôle 2011 : Sur la figure réduite ci-contre, on sait que :
 - o Les points A, C et B sont alignés.

Les points D, E et B sont aussi alignés.

$$\circ$$
 CB = 5 cm CA = 4 cm.


$$\circ$$
 $\widehat{DCA} = 30^{\circ}$ $\widehat{DAC} = 110^{\circ}$ $\widehat{ECD} = 61^{\circ}$.

3 Contrôle 2008 : Collisionneur.

Afin de percer les secrets de la matière, l'Organisation Européenne pour la Recherche Nucléaire (le CERN) a mis en service en 2008 entre la France et la Suisse la machine la plus complexe de tous les temps : le LHC (Large Hadron Collider), un grand anneau circulaire de 13,5 km de rayon pour accélérer les particules.

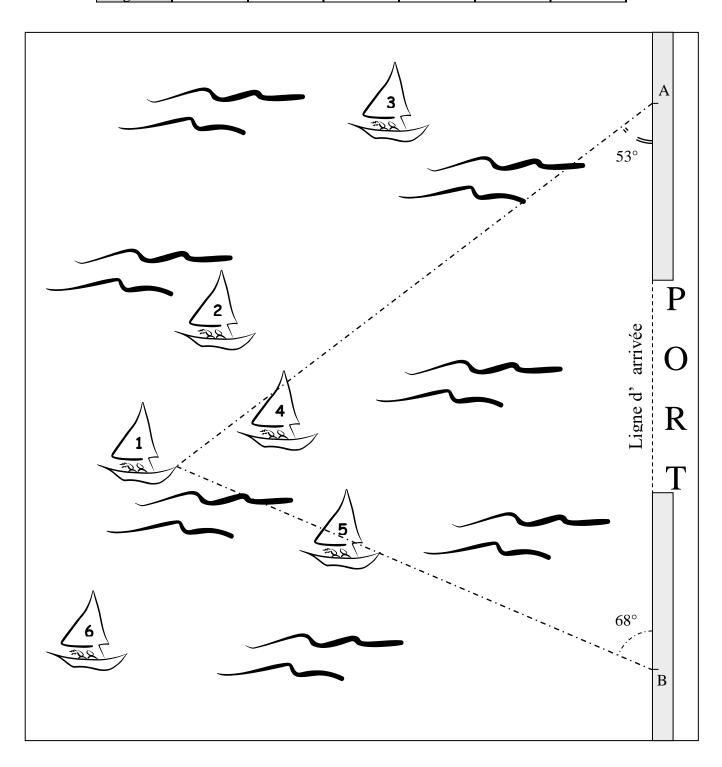
Quel est la longueur (en km) de cet anneau ? *Valeur exacte* puis une valeur approchée à l'unité en prenant pour π : $\pi \approx 3$.

Voir Corrigé Contrôle 2008!

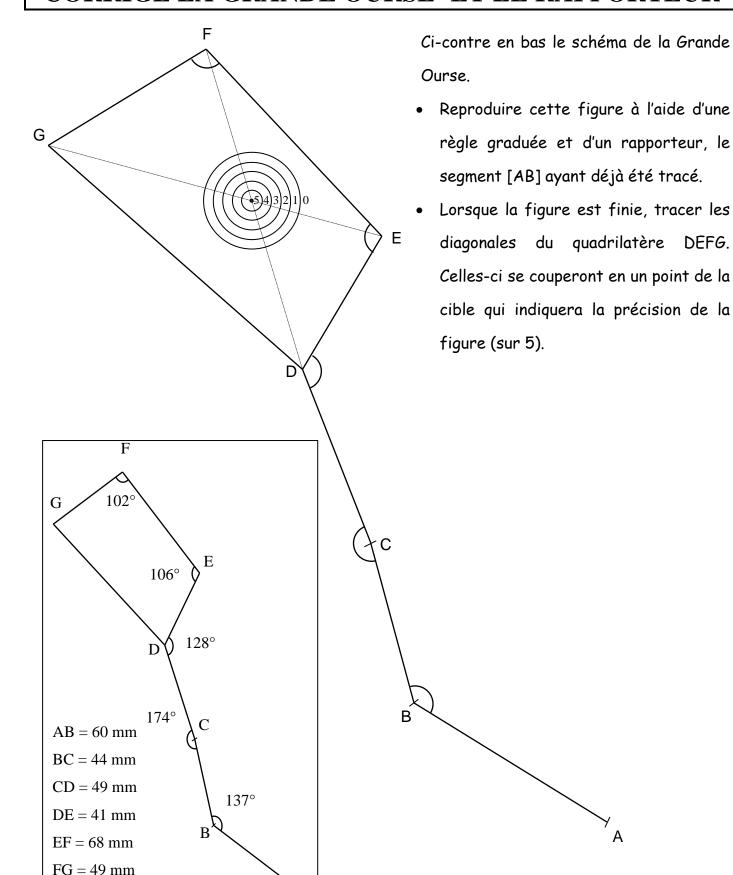
4 Contrôle 2010 : Cinémaths.

Avatar de James Cameron sorti en 2009 est l'un des films les plus chers de toute l'histoire du Cinéma mais aussi celui qui a gagné le plus d'argent (hors inflation)! André San Frappé décide d'aller le voir au cinéma « Le Grand Rex » à Paris, ce samedi à la séance de 17h20. Le film commence 15 minutes plus tard après la publicité et se termine à 20h16.

- 1. A quelle heure commence le film? A h min
- 2. Combien de temps dure ce film Avatar?


Voir Corrigé Contrôle 2010!

<u>Synthèse</u>: <u>Calcul horaire</u>


CORRECTION: L'ARRIVÉE DE LA RÉGATE

- ➢ Pour repérer l'arrivée des bateaux, 2 juges sont placées en 2 points A et B de la jetée du port. Grâce à un sextant (appareil de mesure visuelle des angles), le juge en A voit le bateau ① avec un angle de 53° par rapport à la jetée ; tandis que le juge en B lui voit 68°.
- ➤ Le tableau ci-dessous donne en colonne les 2 angles vus de A et de B pour les 6 bateaux de la régate. Replacer chacun de ces bateaux sur le dessin ci-dessous et donner le classement provisoire.

Bateau	1	2	3	4	5	6
Angle A	53°	60°	80°	47°	34°	45°
Angle B	68°	52°	26°	57°	68°	87°

CORRIGE LA GRANDE OURSE⁴ ET LE RAPPORTEUR

⁴ Qu'est ce que la Grande Ourse ? Pourquoi lui a-t-on donné le nom de Grande Ourse alors que cela ressemble à une casserole ?!