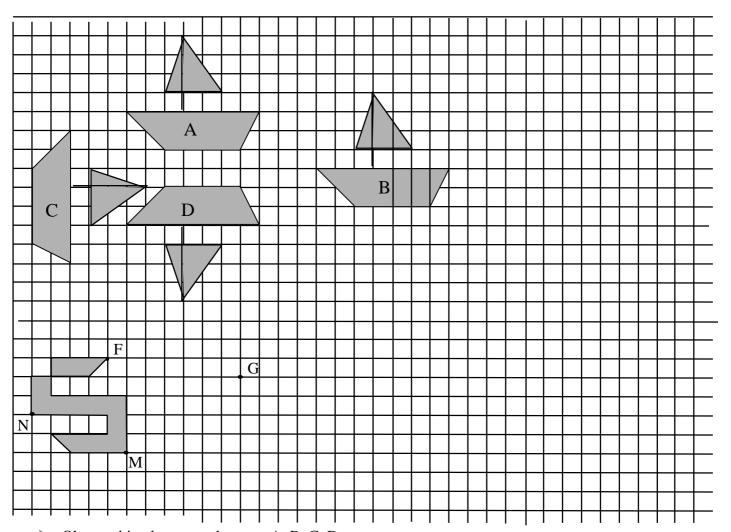
LA TRANSLATION


« Les Maths sont comme l'Amour : une idée simple mais qui peut parfois se compliquer. »

I Start and matit a main			
. Il était un petit navire			<i>·</i>
I. La Translation – Introduction			·
II. Vocabulaire et notations.			
V. Translations et parallélogrammes			
V. Propriétés des translations			
VI. Tableau récapitulatif des transformations			1
VII. Exercices.			1.
VIII. Pour préparer le test et le contrôle			1
Pré requis pour prendre un bon départ :	A refaire	A revoir	<i>Maîtrisé</i>
	A refaire	A revoir	Maîtrisé
> <u>Pré requis pour prendre un bon départ :</u> Parallélogramme : définition et propriétés. Parallélogramme : constructions.	A refaire	A revoir	Maîtrisé
Parallélogramme : définition et propriétés.	A refaire	A revoir	Maîtrisé
Parallélogramme : définition et propriétés. Parallélogramme : constructions.	A refaire	A revoir	Maîtrisé
Parallélogramme : définition et propriétés. Parallélogramme : constructions. Symétrie axiale.	A refaire	A revoir	Maîtrisé
Parallélogramme : définition et propriétés. Parallélogramme : constructions. Symétrie axiale. Symétrie centrale.		A revoir	Maîtrisé
Parallélogramme : définition et propriétés. Parallélogramme : constructions. Symétrie axiale. Symétrie centrale. Les transformations vues au Collège.			Maîtrisé
Parallélogramme : définition et propriétés. Parallélogramme : constructions. Symétrie axiale. Symétrie centrale. Les transformations vues au Collège. En 6ème, nous avons vu « l'effet miroir » c-à-d la	la		Maîtrisé

Nom et Prénom:.....

4^{ème}

I. <u>IL ETAIT UN PETIT NAVIRE.</u>

> Observe bien les quatre bateaux A, B, C, D.

Quel bateau a été obtenu en faisant **glisser** le bateau A?.....

Symbolise par une flèche bleue le mouvement exact qu'a fait le bateau A (en reliant par exemple les sommets des deux mats). Trace de même par une flèche rouge le mouvement qu'a fait l'arrière (à droite) du bateau A. Cette flèche rouge relie-t-elle les arrières des deux bateaux A et B ? Bien sûr que

- Trace par une flèche verte le mouvement rectiligne qui va de F vers G (qu'on notera FG).

 Trace l'image de la figure qui ressemble à un S par la translation qui transforme F en G.

 Place le point M' image de M par la translation qui transforme F en G.

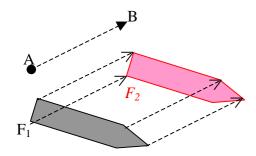
 Trace FGM'M en rouge. Quelle semble être la nature de FGM'M?

 Place le point N' image de N par la translation qui transforme F en G.

 Trace FGN'N en rouge. Quelle semble être la nature de FGN'N?

LA TRANSLATION: INTRODUCTION. II.

A. Sens commun de la translation :


L'activité précédente p.2 nous permet d'affirmer :

La **Translation**, c'est ce qui se passe quand **il y a glissement**.

Plus précisément :

Une figure est la translatée d'une autre figure lorsque ces deux figures se superposent parfaitement après glissement selon un mouvement rectiligne donné.

B. Vocabulaire et notations :

La flèche F₁, en la faisant glisser selon le mouvement rectiligne qui va de A vers B, se superpose exactement à la flèche F₂.

La flèche F₂ est donc la translatée de la flèche F₁ selon le mouvement rectiligne qui va de A vers B.

En reprenant l'exemple de cette situation, introduisons le vocabulaire et les notations :

① On note AB le mouvement rectiligne qui va de A vers B.

2 On parle alors de **translation selon le mouvement AB** . On la note $t_{\overrightarrow{AB}}$

<u>Remarque</u>: Par la translation $\overrightarrow{t_{AB}}$ en quoi est transformé A? En!

C'est pourquoi on parle aussi de la translation qui transforme A en B au lieu de la translation de mouvement AB.

3 On dit que : F_2 est l'**image** de F_1 par la translation t_{AB} .

ou bien que F_2 est le **translaté** de F_1 par la translation t_{AB} .

Dans tous les cas, on note :

 $t_{\overrightarrow{AB}}(F_1) = F_2$ ou $F_1 \xrightarrow{t_{\overrightarrow{AB}}} F_2$

Trois exercices:

① Comment note-t-on:

- Le mouvement rectiligne qui va de J vers E? Le mouvement qui va de E vers J?
- La translation de mouvement TU?...... La translation qui transforme I en L?......

La translation où I est le transformé de L?..... La translation où E est le translaté de L?......

La translation où O a pour image A? La translation où l'image de O est A?

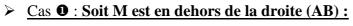
¹ Un mot plus savant pour « mouvement » : **VECTEUR**. Cela sera vu en 3^{ème}.

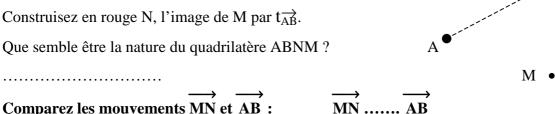
② Traduire:

$\overrightarrow{t_{CD}}$	$(\mathbf{M}) = \mathbf{M}'$		M' est l'
P	$t_{AB} \rightarrow$	K ===>	K est le

L est l'image de P par la translation qui transforme L en K

P est le translaté de N par le glissement qui va de N en M


③ Soit la translation $t\overrightarrow{OK}$. En quoi est transformé O? Soit $t\overrightarrow{KO}$, quelle est l'image de K?


Soit une translation qui transforme L en M : elle s'écrit :

Soit une translation telle que N est l'image de P : elle peut s'écrire :

III. TRANSLATIONS ET PARALLELOGRAMMES.

On veut savoir comment « glisse » un point M selon un vecteur AB donné. 2 cas se présentent :

Cas 2 : Soit M est sur la droite (AB) :

Tracer AB en rouge (attention au sens!)

Construisez en vert N l'image de M par t_{AB} .

Où se trouve N? Sur la

Comparez les longueurs AB et MN. AB MN

Les demi droites[AB) et [MN) sont elles dans le même sens ?

Comparez les mouvements MN et AB:

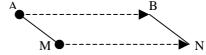
> On va maintenant définir « proprement » (mathématiquement) ce qu'est une translation ! Soient deux points A et B (qui donnent indirectement le mouvement rectiligne \overrightarrow{AB} !) :

« Définir la translation qui transforme A en B (t_{AB}), c'est être capable de donner (construire) sans ambiguïté l'image de n'importe quel point M du plan par cette translation. »

В

M

D'où la définition de la page suivante :


A. Image d'un point par une translation :

1. Définition :


Soient deux points donnés A et B, et soit M un troisième point quelconque :

La translation qui transforme A en B (la translation de mouvement rectiligne \overrightarrow{AB}), notée $\overrightarrow{t_{AB}}$, est définie de la manière suivante :

- Quand M n'appartient pas à (AB) alors l'image de M par t_{AB} est le point N tel que :
 - ➤ ABNM² est un parallélogramme.

- **2** Quand M appartient à (AB) alors l'image de M par t_{AB} est le point N sur (AB) tel que :
 - \rightarrow AB = MN
 - Et les demi-droites [AB) et [MN) ont le même sens.

2. Sens de cette définition :

- Cette définition, dans les deux cas, indique comment il faut construire l'image d'un point quelconque (en dehors ou sur la droite « portant le mouvement ») par une translation.
- 2 Elle montre le lien profond qui unit translation et parallélogramme.
- $\ensuremath{\mathfrak{g}}$ Elle donne le passage : **Translations** \rightarrow **Parallélogramme.**
- Dans les deux cas: Le mouvement rectiligne MN est le même que le mouvement rectiligne AB.
 c-à-d =
 - 3. Passage Translation → Parallélogramme : méthode.

[P ∉ (AN)]	Q N
$ \underline{\text{M\'ethode}}: \text{puisque}\left\{t_{AN}^{\rightarrow}\left(P\right) = Q\right\} \text{ alors PQNA est un parall\'e logramme.} $	P A

A vous maintenant! Conseil: faites d'abord un croquis pour visualiser la situation.

- $\qquad \qquad \text{Puisque} \; \begin{cases} D \not\in (AB) \\ \rightarrow \\ t_{AB}(D) = C \end{cases} \; \text{alors} \; \dots \quad \text{est un} \; \dots$
- $\text{Puisque} \left\{ \begin{aligned} L \not\in (UR) \\ \to \\ t_{RU}(L) = E \end{aligned} \right\} \text{ alors } .$
- $\qquad \qquad \text{Puisque} \; \left\{ \begin{array}{c} A \not\in (MO) \\ \dots \end{array} \right\} \; \text{alors AMOR est un parallélogramme}.$

_

² Attention à l'ordre des lettres!


B. Conséquence très importante de la définition :

La « réciproque » du cas **0** p.5 est aussi vraie et très importante :

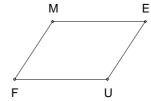
Règle: passage Parallélogramme → Translation

	(condition ou hypothèse)		(résultats ou conclusions)
Quand	ABNM est un	alore	$\int \mathbb{D} \ \ N \ \text{est l'image de M par } t \overrightarrow{AB}$
	parallélogramme	alors	② N est l'image de B par t →

Figure:

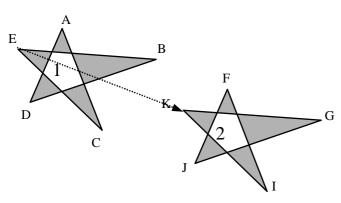
<u>Utilité</u>: Cette conséquence sert de relation de passage : Parallélogramme →

1. Passage Parallélogramme → Translation : méthode.


Soit SMEC le parallélogramme ci contre.

M E

Complétez:


- Puisque est un parallélogramme alors M est l'..... de E par t_____
- Puisque est un alors $\overrightarrow{t_{CS}}(E) = \dots$
- > Soit EUFM le parallélogramme ci contre.

Complétez:

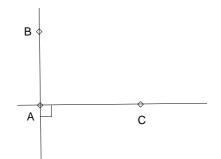
- Puisque alors est l'..... de F par t_{ME} .
- Puisque alors $t \xrightarrow{FU} (.....) = E$

Exercice 1:

L'image ci-contre te montre deux étoiles.

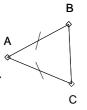
L'étoile 2 est l'image de l'étoile 1 par la translation qui transforme E en K.

L'image de A est et est un parallélogramme.


L'image de B est et est un parallélogramme.

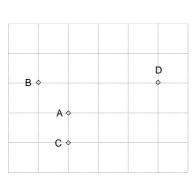
L'image de C est et est un

parallélogramme


Exercice 2 :

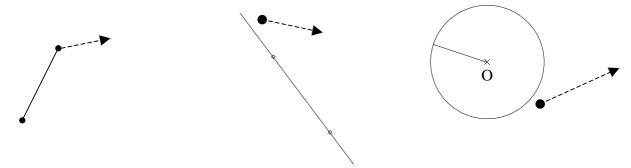
Sur la figure codée ci contre, construire D, l'image de C par $t_{\overline{AB}}$. Quelle est la nature de ABDC ? (justifiez !)

Exercice 3:


Sur la figure ci contre, ABC est isocèle en A. Construire D le translaté de C par t_{AB} . Quelle est la nature de ABDC ? (justifiez !)

Exercice 4:

Sans utiliser de compas, placer en vert E, F et G les images respectives de A, B et C par $t_{\overrightarrow{AD}}$.


Montrer que BFGC est un parallélogramme.

IV. PROPRIETES DES TRANSLATIONS.

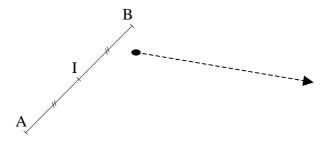
A. <u>Transformation par les translations des figures de base :</u>

Dessinez en rouge les translatés du segment, de la droite et du cercle.

➤ Le translaté d'un segment
est aussi un:
① de même

➤ La translatée d'une droite
est aussi une,
qui est à la
droite précédente.

>	Le	translaté	d'un	cercle
est a	aussi	un		:
① s	son c	entre est l	e	
du c	centr	e de l'anci	en cer	cle.
(2) d	le má	ama		

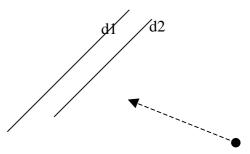

B. 4 propriétés de conservation :

Les 4 propriétés de conservations qui vont suivre traduisent la non-déformation des objets lors d'un glissement !

1 Les translations conservent **les Longueurs donc le milieu** :

① Le translaté d'un segment est un de	e même
2 En conséquence, les translations conservent aussi le	·····::
Le translaté du milieu d'un segment est le	du segment image.

Figure: Tracer en rouge [A'B'] et I', les translatés du segment [AB] et du milieu I du segment [AB].

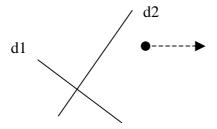

Vous remarquez que I' est aussi le de [.....].

Méthode:	Puisque	I e	st 1	le		de	[AB],	alors,	par	conservation	du	milieu,	son
		I' est	aus	ssi i	le	d	lu segm	ent ima	ge [].			

2 Les translations conservent le Parallélisme :

Les translatées de 2 droites parallèles sont deux qui sont aussi entre elles

Figure: Tracer en rouge les translatées (d'1) et (d'2) des deux droites parallèles (d1) et (d2).


Vous remarquez que les deux droites images sont aussi entre elles !

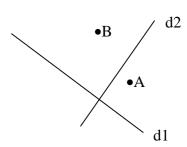
<u>Méthode</u>: Puisque (d1) (d2) alors, par conservation du parallélisme, leurs (d'1) et (d'2) seront aussi

3 Les translations conservent les Angles (donc la Perpendicularité) :

Le translaté d'un angle est un angle de même

Figure: Tracer en rouge les translatés (d'1) et (d'2) des 2 droites perpendiculaires (d1) et (d2).

Codage!

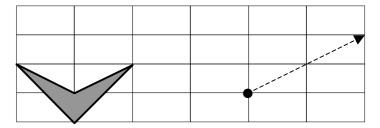

Vous remarquez que les deux droites images sont aussi entre elles!

Méthode: Puisque (d1) (d2) alors, par conservation de la mesure d'angles, alors leurs (d'1) et (d'2) seront aussi

- Attention! Il n'est nul part dit qu'une droite et son image sont perpendiculaires, ce qui est toujours faux! Regardez (d1) et (d'1): d'après le cours V Al p.8, elles sont!
 - \triangleright Exercice: Sur la figure ci contre, (d1) \perp (d2).

Tracer (d3), l'image de (d2) par la translation qui transforme A en B.

Comment sont (d1) et (d3)? Justifiez!



4 Les translations conservent les Aires :

Une figure et sa figure translatée ont même

Sans compas, tracez en rouge la translatée de la figure grise ci contre.

Ont-elles même aire?

 $\underline{\underline{\text{M\'ethode}}} : \text{ Puisque la figure rouge est la} \qquad \qquad \text{de la figure grise, alors, par conservation}$ $\text{des} \qquad \qquad \text{des} \qquad \qquad$

6 Conséquences des propriétés de conservation :

Puisque les translations conservent les distances, les angles, le parallélisme etc. alors quelle est l'image par une translation :

d'un triangle isocèle ? d'un triangle équilatéral ?

d'un parallélogramme ? d'un losange ?

d'un rectangle ? d'un carré ?

V. TABLEAU RECAPITULATIF DES TRANSFORMATIONS.

Transformations	« Sens commun »	Elément(s) caractéristique(s)	Objet(s) géométrique(s) associé(s)	Figure
vue en	« Effet ou Réflexion »	Axe de symétrie		d M'
Symétrie vue en 5 ^{ème}	« Demi»			M' O
vue en 4 ^{ème}				B M'
Rotation vue en 3 ^{ème}	« Tourner autour d'un point fixe »	Centre de rotation Angle orienté	Angle géométrique et Cercle	M' O M

VI. EXERCICES.

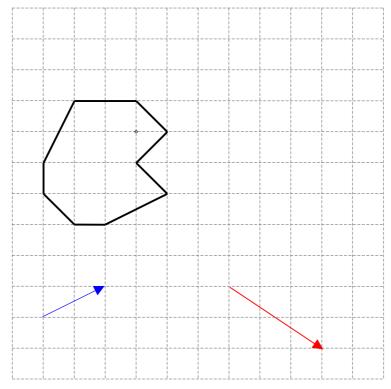
A. Construction de figures-images par translation :

Méthode de construction:

Pour construire la figure image (en couleur!), on doit :

- Repérer le « mouvement » et le tracer (attention au sens) si ce n'est déjà fait puis :
- 2 On construit l'image point par point³:
- ➤ Soit à la règle et au compas par parallélogramme quand il n'y a pas de quadrillage.
- Soit par déplacements horizontaux et verticaux sur le quadrillage quand il y en a un.

Exercice 1:

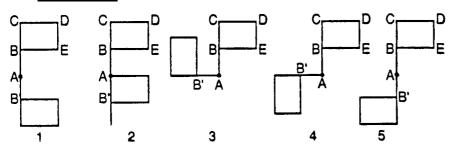

Construire les images du cœur par la translation qui transforme A en B et par celle qui transforme B en A.

• A

• B

Exercice 2:

Construire les deux images du Pacman suivant par les 2 translations dont chaque vecteur vous est donné.



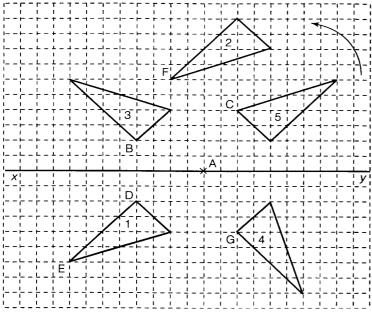
³ Sommet par sommet serait plus juste.

Cours de Mr Jules v2.3 Classe de Quatrième Contrat 4 page 12

B. Identification des transformations :

Exercice 1:

Chacun de ces dessins représente un petit drapeau ABCDE auquel on fait subir une transformation géométrique.

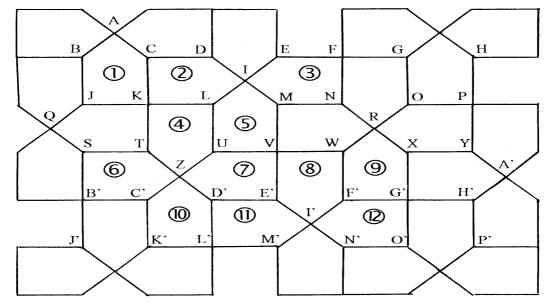

Dans chacune de ces transformations, le point B a pour image B'.

Remplis le tableau suivant en indiquant :

- le numéro du dessin correspondant à la transformation.
- les éléments de chaque transformation (axe de symétrie ou centre de symétrie ou « mouvement »).
- Fais apparaître en rouge sur chaque figure les éléments qui définissent chaque transformation s'ils ne sont pas déjà tracés.

n°	Type de transformation	Elément(s) définissant la transformation
	symétrie centrale	de centre
	translation	de « mouvement » ou
	symétrie axiale	d'axe
	symétrie axiale	d'axe

Exercice 2 :


Chacun des triangles 2, 3, 4 et 5 est obtenu à partir du triangle 1 à l'aide d'une symétrie axiale, ou d'une symétrie centrale, ou d'une translation.

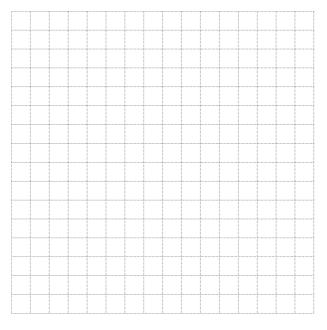
Complète les trois phrases suivantes :

- L'image du triangle 1 par la symétrie axiale d'axe est le triangle
- L'image du triangle 1 par la symétrie centrale de centre est le triangle
- L'image du triangle 1 par la translation qui transforme en est le triangle

Fais apparaître en rouge les éléments qui définissent chaque transformation s'ils ne sont pas déjà tracés.

Exercice 3:

Complétez le tableau suivant :


	type de transformation	éléments définissant la transformation		type de transformation	éléments définissant la transformation
①→⑤			®→ \$		
4→6			②→11		
4→10			⑤→8		
⊕→⑩			9→1		

Exercice 4:

Construis, sur le quadrillage ci-contre, au milieu, un triangle ZAN rectangle en A et tel que :

$$AN = AZ = 4$$
 carreaux.

- 1) Place le point K image de Z par la symétrie de centre A.
- 2) Place le point L image de A par la symétrie axiale d'axe (ZN).
- 3) Place le point J image de Z par la translation qui transforme N en A.
- 4) Place le point M, image de N par la translation $t \xrightarrow{ZA}$.

Cours de Mr Jules v2.3 Classe de Quatrième Contrat 4 page 14

C. Parallélogrammes et translations :

Exercices à faire à gauche ou dans votre cahier d'exercices.

La majorité des exercices de raisonnement vont jouer sur le changement de registres :

Passage Translation \rightarrow Parallélogramme ou inversement, passage Parallélogramme \rightarrow Translation.

Exercice 1:

Soit un triangle ABC de longueur AB = 3cm; AC = 4 cm et BC = 5 cm.

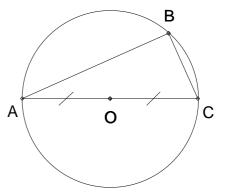
- 1. Tracer ce triangle ABC sur votre copie et construire en vert le point D, le translaté de B par la translation qui transforme A en C.
- 2. Quelle est la nature de ABC?
- 3. Prouver que ABDC est un rectangle.
- 4. Soit O l'intersection des 2 diagonales. Quelle est la nature du triangle COD ?

Exercice 2:

Sur la figure ci contre (qu'on complètera au fur et à mesure) [AC] est un diamètre du cercle $\, \mathbb{C} \,$ et B est un troisième point sur ce cercle $\, \mathbb{C} \,$.

Tracer en vert E et D, les images respectives de B et C par la translation qui transforme A en B.

Partie ①:


- 1. Prouver que (AB) \perp (BC).
- 2. Montrer que BCDE est un rectangle.
- 3. On sait que AC = 5 et BC = 3. Calculer AB.

Partie 2:

- 4. Montrer que AB = BE.
- 5. Montrer que (BC) est la médiatrice de [AE].
- 6. En déduire la nature de ACE.

> Exercice 3:

- 1. Tracer un cercle $\mathcal{C}_{(O;3cm)}$ puis placer *sur le cercle* 3 points A, B et C tels que le triangle ABC soit isocèle en A et AB = 5cm.
- 2. Construire en vert les points D et E, images respectives des points A et C par la translation qui transforme B en C.
- 3. Tracer le plus simplement possible le cercle \mathcal{C} circonscrit au triangle CDE. Expliquer.
- 4. Montrer que (OA) \perp (BC) et que (AD) // (BC).
- 5. En déduire que la droite (AD) est tangente à \mathcal{T} .

Cours de Mr Jules v2.3 Classe de Quatrième Contrat 4 page 15

VII. POUR PREPARER LE TEST ET LE CONTROLE.

A. Je dois savoir:

Remplissez ce tableau :

	A refaire	A revoir	Maîtrisé
Connaître le sens commun et la définition d'une translation.			
Construire le translaté d'un point au compas.			
Construire la translatée d'une figure.			
Utiliser le quadrillage pour construire le translaté.			
Différencier symétries axiale, centrale et translations.			
Utiliser le lien « translation↔parallélogramme » dans les démonstrations.			
Utiliser les propriétés de conservation des translations.			
Aimer les translations.			

➤ Pour préparer le contrôle : Vrai ou Faux et n°1 à 4 p.148.

B. Conseils:

Constructions: Tracez d'abord en couleur le vecteur caractérisant la translation.

Traits de construction légers mais apparents.

Utilisez de la couleur ; n'oubliez pas les codages directement induits.

➤ Raisonnements: Penser toujours au double passage « translations ↔ parallélogramme »

C. Erreurs à éviter :

> Se tromper de sens pour le vecteur de la translation :

 \underline{Ex} : La translation telle que A est l'image de B est $t \xrightarrow{BA}$ et non $\mathcal{X} \xrightarrow{AB}$!

- ightharpoonup Se tromper dans le nom du parallélogramme : D est l'image de C par t \overrightarrow{AB} alors est un parallélogramme et non DCAB !
- > Une affirmation non justifiée soit par un raisonnement soit par une donnée de l'énoncé ne vaut RIEN!
 - > Beaucoup inventent des hypothèses pour justifier leurs raisonnements.

D. Fiche de révision à faire.

\sim	1	1		1 .	0	
()1	ıet	sera	le ni	rochain	contrat 7	